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Abstract. Hydrologic response to rainfall on fragmented or burnt hillslopes is strongly influenced by the ensuing

connectivity of runoff and erosion processes. Yet cross-scale process connectivity is seldom evaluated in field studies
owing to scale limitations in experimental design. This study quantified surface susceptibility and hydrologic response
across point to hillslope scales at two degraded unburnt and burnt woodland sites using rainfall simulation and hydrologic

modelling. High runoff (31–47 mm) and erosion (154–1893 g m�2) measured at the patch scale (13 m2) were associated
with accumulation of fine-scale (0.5-m2) splash-sheet runoff and sediment and concentrated flow formation through
contiguous bare zones (64–85% bare ground). Burning increased the continuity of runoff and sediment availability and
yield. Cumulative runoff was consistent across plot scales whereas erosion increased with increasing plot area due to

enhanced sediment detachment and transport. Modelled hillslope-scale runoff and erosion reflected measured patch-scale
trends and the connectivity of processes and sediment availability. The cross-scale experiments and model predictions
indicate the magnitude of hillslope response is governed by rainfall input and connectivity of surface susceptibility,

sediment availability, and runoff and erosion processes. The results demonstrate the importance in considering cross-scale
structural and functional connectivity when forecasting hydrologic and erosion responses to disturbances.

Additional keywords: ecohydrology, fire effects, infiltration, risk assessment, runoff, soil erosion, vegetation transition,
wildfire, woodland encroachment.
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Introduction

The patchy attributes of rangelands provide unique landscapes

for investigating the dynamic interaction of structural and
functional connectivity that propagates hillslope runoff and
erosion response (Ludwig et al. 1997; Wainwright et al. 2000;

Bracken and Croke 2007; Turnbull et al. 2008; Reaney et al.

2014; Williams et al. 2014a, 2014b). Here, we define structural
connectivity as the connectivity of surface conditions that are

susceptible to runoff generation and sediment detachment and
transport (Williams et al. 2014a), as indicated primarily by the
percentage of bare ground (Johansen et al. 2001; Benavides-
Solorio and MacDonald 2005; Wagenbrenner et al. 2006;

Pierson et al. 2008a, 2009, 2010, 2013; Williams et al. 2014b).
By functional connectivity, we are referring to the connectivity

of runoff and erosion processes (mainly rainsplash, sheetflow
and concentrated flow) along a hillslope (Turnbull et al. 2008;

Reaney et al. 2014; Williams et al. 2014a, 2014b). Hillslope
surface runoff and erosion from well-vegetated rangelands are
low owing to spatial heterogeneity in infiltration, runoff sources,

and sediment detachment and deposition (Pierson et al. 1994;
Puigdefábregas et al. 1999; Wilcox et al. 2003; Ludwig et al.

2005; Puigdefábregas 2005; Pierson et al. 2009). Isolated bare

patches between plant canopies (interspaces) are sources for
runoff generation and soil detachment by rainsplash and sheet-
flow (splash-sheet). Patches of vegetation and ground cover
intercept and store rainfall and overland flow, facilitate infil-

tration and sediment retention, and protect the ground surface
from raindrop impact and detachment by flow. Plant community
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degradation associated with disturbances often results in
increased surface runoff and soil loss due to fragmentation of the
vegetation and ground cover patch-structure (Abrahams et al.

1995; Wilcox et al. 1996; Wainwright et al. 2000; Pierson et al.
2010; Turnbull et al. 2010a, 2010b; Williams et al. 2014b).
Following degradation, patches of bare ground become con-

nected (structural connectivity), increasing the continuity of
potential runoff and erosion sources (Davenport et al. 1998;
Turnbull et al. 2008; Bracken et al. 2013;Williams et al. 2014a,

2014b). Splash-sheet processes occurring at fine scales (,1 m2)
become sources for runoff and erosion delivery to coarse scales
(tens to hundreds of square metres) where other runoff and
erosion processes become active (functional or process con-

nectivity) (Wainwright et al. 2000; Bracken and Croke 2007;
Turnbull et al. 2008; Pierson et al. 2011; Williams et al. 2014a,
2014b). Partitioning of plot-based experiments by patch type

over different spatial scales pre- and post degradation provides a
basis for evaluating effects of dynamic structural and functional
connectivity on cross-scale sediment delivery (Bracken and

Croke 2007;Wainwright et al. 2000;Wilcox et al. 2003; Pierson
et al. 2009, 2010, 2013).

Fire increases the risk for hillslope and watershed-scale

runoff and erosion through alteration of vegetation and
ground-cover patch structure (Puigdefábregas 2005; Shakesby
and Doerr 2006; Pierson et al. 2011; Williams et al. 2014a).
Rain falling on bare soil is rapidly converted to runoff, particu-

larly where water-repellent soil conditions exist (Shakesby et al.
2000; Pierson et al. 2008a, 2008b; Williams et al. 2014b).
Burnt bare soils also provide a source of readily detached soil

(Cannon et al. 2001a; Wagenbrenner et al. 2010; Al-Hamdan
et al. 2012a; Nyman et al. 2013). Ample runoff generation and
splash-detached sediment at fine scales are transferred to

coarse scales through sheetflow and high-velocity concentrated
flow over contiguous burnt and bare areas (Benavides-Solorio
and MacDonald 2005; Spigel and Robichaud 2007; Pierson
et al. 2009, 2011, 2013; Williams et al. 2014a, 2014b). Over

hillslope andwatershed scales, connectivity of burnt-area runoff
and sediment sources during high-intensity storms commonly
results in flooding, mudslides, and debris flows and damage

to resources, property and life (Cannon et al. 1998, 2001b;
Moody and Martin 2001a; Pierson et al. 2002; Neary et al.

2012). Understanding of the mechanisms that facilitate

hydrologic and erosion process (functional) connectivity is
paramount in mitigating hillslope and watershed responses to
high-intensity rainfall events (Moody et al. 2013; Robichaud

et al. 2013a, 2013b; Wagenbrenner and Robichaud 2013;
Williams et al. 2014a).

Recent advancements in hydrologic modelling have
increased the ability to predict the effects of structural and

functional or process connectivity on sediment delivery from
disturbed rangelands (Robichaud et al. 2007; Nearing et al.

2011; Al-Hamdan et al. 2015). For example, the Rangeland

Hydrology and Erosion Model (RHEM; Nearing et al. 2011)
was developed from diverse rangeland datasets for predicting
runoff and erosion responses on rangelands (Wei et al. 2009;

Al-Hamdan et al. 2012a, 2012b, 2013). RHEM is a modified
version of the Water Erosion Prediction Project (WEPP) model
(Flanagan and Nearing 1995) and was recently enhanced for
runoff and erosion prediction from disturbed hillslopes

(Al-Hamdan et al. 2015). The enhanced version, RHEM 2.1,
utilises the KINEROS2model (Smith et al. 1995) for simulation
of hydrologic processes (Al-Hamdan et al. 2015). Infiltration

and soil erodibility in RHEM are parameterised as a function of
vegetation, ground cover and soil texture (Nearing et al. 2011;
Al-Hamdan et al. 2012a). Sediment delivery rate in RHEM is

the total detachment rate of splash-sheet and concentrated flow
using a dynamic partial differential sediment continuity equa-
tion (Al-Hamdan et al. 2015). Splash-sheet detachment in

RHEM is a function of splash-sheet soil erodibility and rainfall
intensity (Wei et al. 2009). Soil detachment by concentrated
flow uses the stream-power-based erodibility and model-
calculated hydraulic flow parameters (Al-Hamdan et al.

2012a, 2012b, 2013, 2015). Parameterisation of RHEM occurs
through the model interface and can be amended by the user
through an input file. RHEM parameter estimation equations

and themodel documentation are available at http://apps.tucson.
ars.ag.gov/rhem/docs (accessed 20 June 2014).

The need to understand the effects of structural and func-

tional connectivity on cross-scale runoff and erosion responses
is well established (Kutiel et al. 1995; de Vente and Poesen
2005; Bracken and Croke 2007; Turnbull et al. 2008; Cantón

et al. 2011; Bracken et al. 2013; Moody et al. 2013). However,
few studies experimentally partition and quantify runoff and
erosion processes at multiple spatial scales (Wagenbrenner and
Robichaud 2013), limiting inferences on connectivity. The

present study quantifies runoff and erosion across point to
hillslope scales on multiple degraded and burnt rangeland sites.
Our goal is to provide tangible evidence of the evolution of

cross-scale functional or process connectivity associated with
increased structural connectivity and the impact of cross-scale
structural and functional connectivity on hillslope-scale sedi-

ment yield. A suite of rainfall simulation and hydrologic
modelling techniques were used to measure and predict runoff
and erosion at various spatial scales for two degraded and burnt
woodland-encroached shrublands in the Great Basin, USA. The

primary objectives were: (1) quantify vegetation and ground
cover, and runoff and erosion by splash-sheet processes in
interspaces and in areas underneath tree and shrub canopies

(coppice mounds); (2) quantify vegetation and ground cover,
and runoff and erosion by combined splash-sheet and concen-
trated-flow processes within the intercanopy and in areas

underneath tree canopies; (3) compare measured runoff and
erosion rates across small-plot (0.5-m2) to large-plot (13-m2)
scales; and (4) evaluate the influence of plot-scale cover and

hydrologic and erosion processes on contributions of runoff and
erosion at the hillslope scale.

Methods

Study sites

Data were collected in a single-leaf pinyon–Utah juniper (Pinus

monophylla Torr. and Frém.– Juniperus osteosperma [Torr.]
Little) woodland (Marking Corral site) and a Utah juniper
woodland (Onaqui site) 1–3 months before (2006, Year 0) and

,12 months following prescribed fire (2007, Year 1). The
Marking Corral site (lat. 3982701700N, long. 11580605100W) is
located in the Egan Range,,27 km north-west of Ely, Nevada,
USA. The Onaqui site (lat. 4081204200N, long. 11282802400W) is
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located in the OnaquiMountains, 76 km south-west of Salt Lake
City, Utah, USA. Site-level topography, climate, soils and
common vegetation are described in Table 1. Prescribed fires
were implemented on portions of both sites in autumn 2007.

Burn severity was not quantified, but presence of residual and
scorched tree needles, shrub skeletons, blackened litter and
downed woody debris immediately post-fire at both sites were

indicative of low to moderate burn severity for woodlands
(Parsons et al. 2010). Individual tree canopy scorch averaged
50–75% at Marking Corral and 75–99% at Onaqui (Pierson

et al. 2014).

Experimental design

Small-plot (0.7� 0.7-m) rainfall simulation experiments were

used to quantify fine-scale effects of vegetation and surface
conditions on runoff and erosion from splash-sheet processes.
Small plots at each site were installed before burning (Year 0)
using methodology described in Pierson et al. (2010). Small

plots were placed on individual tree and shrub coppices and in
the interspaces between tree and shrub coppices in order to
partition respective microsite runoff and erosion contributions

to the large-plot scale. Vegetation and ground cover and rainfall
simulation data were collected on all small plots in Year 0
(Pierson et al. 2010) and as repeated measures in burnt and

unburnt areas in Year 1. Only the Year 1 small-plot data are used
in the current study. The number of small plots sampled inYear 1
for each site�microsite� treatment combination is shown in

Table 2. Average slope gradient for small plots was 12% at
Marking Corral and 18% at Onaqui.

Large-rainfall simulation plots (2 mwide� 6.5m long) were
used to quantify effects of vegetation and surface conditions on

runoff and erosion from combined splash-sheet and concentrat-
ed-flow processes at the patch scale. Large plots were randomly
selected and installed in pairs using methodology described in
Pierson et al. (2010). Each large plot was placed on either a tree

zone (area underneath and immediately adjacent to tree cano-
pies) or shrub–interspace zone (intercanopy area outside of tree
canopy influence). Six large plots per zone type were installed

and sampled at each site in Year 0 before burning, but within the
area subsequently burned. One year post-fire, six new large plots
per zone type were installed and sampled within burnt areas at

each site. Average slope gradient for large plots was 9% at
Marking Corral and 18% at Onaqui across both study years.
Trees were trimmed or removed from small and large rainfall-

simulation plots immediately preceding experiments to mini-
mise canopy interferencewith rainfall and plot sampling. Shrubs
were retained on plots, but were trimmed along plot boundaries
to prevent stemflow from exiting or entering the plot.

Hillslope-scale runoff and erosion were modelled with the
RHEM model. Model runs were constructed for burnt and
unburnt conditions based on site biophysical attributes (Table 1)

andmeasured vegetation and ground cover from 30� 33-m site-
characterisation plots. Three site-characterisation plots were
randomly located, marked for subsequent sampling, and sam-

pled for vegetation and ground cover within the burn treatment
area at each site in Year 0 before burning. The same three site-
characterisation plots at each site were resampled as repeated
measures 1 year post-fire.

Small-plot scale

Canopy (foliar) cover, ground cover (basal plant, cryptogams,
litter, rock (fragment.5 mm), woody dead, and bare soil), and

Table 1. Topography, climate, soil, tree cover and common understorey vegetation at theMarking Corral andOnaqui sites immediately before fire

Data from Pierson et al. (2010), except where indicated by footnote

Marking Corral, Nevada, USA Onaqui, Utah, USA

Woodland community Single-leaf pinyonA–Utah juniperB Utah juniperB

Elevation (m) 2250 1720

Mean annual precipitation (mm) 382C 468C

Mean annual air temperature (8C) 7.2D 7.5E

Slope (%) 10–15 10–15

Parent rock Andesite and rhyoliteF Sandstone and limestoneG

Soil association Sequra-Upatad-CropperF BorvantG

Depth to bedrock (m) 0.4–0.5F 1.0–1.5G

Soil surface texture Sandy loam, 66% sand, 30% silt, 4% clay Sandy loam, 56% sand, 37% silt, 7% clay

Tree canopy cover (%)H 21A, 6B 28B

Trees per hectareH 465A, 114B 532B

Mean tree height (m)H 2.3A, 1.9B 2.3B

Common understorey plants Artemisia tridentata Nutt. ssp. wyomingensis Beetle and Young; Artemisia nova A. Nelson; Purshia spp.;

Poa secunda J. Presl; Pseudoroegneria spicata (Pursh) A. Löve; and various forbs

APinus monophylla Torr. and Frém.
BJuniperus osteosperma [Torr.] Little.
CEstimated for years 1980–2011 (Thornton et al. 2012); Pierson et al. (2010) estimate (351mmMarkingCorral, 345mmOnaqui)was based on data fromPrism

Group (2009) for years 1971–2000.
DWestern Regional Climate Center (WRCC), Station 264199-2, Kimberly, Nevada (WRCC 2009).
EWRCC, Station 424362-3, Johnson Pass, Utah (WRCC 2009).
FNatural Resources Conservation Service (NRCS) 2007.
GNRCS 2006
HData from Pierson et al. (2010), but restricted to the area subsequently burned. Data for trees .1 m height only.
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ground surface roughness were measured using point frame
methodologies (Pierson et al. 2010). Canopy and ground cover
for each plot were recorded at 15 points (spaced 5 cm apart)

along each of seven evenly spaced transects (10 cm apart and
parallel to hillslope contour) for a total of 105 points per plot.
Percentage cover for each cover type on a plot was derived from

the frequency of hits divided by the total number of points
sampled within the plot. The relative ground surface height at
each sample point was measured by steel ruler as the distance

between the point frame level line and the ground surface.
Ground surface roughness on each plot was estimated as the
arithmetic average of the standard deviations of the ground
surface heights for each of the seven transects sampled on the

respective plot. Litter depth on each plot was measured by steel
ruler to the nearest 1 mm at four evenly spaced points (,15-cm
spacing) along the outside edge of each of the two plot borders

oriented perpendicular to the hillslope contour. Plot average
litter depth was calculated as the mean of the eight litter depths
measured.

Soil water repellency and antecedent soil moisture conditions
on each plot were assessed before rainfall simulation each year.
Soil water repellencywas assessed immediately adjacent (within

,50 cm) to each plot using the water drop penetration time
(WDPT) method (DeBano 1981). Eight water drops (,3-cm
spacing) were applied to the mineral soil surface (ash and litter
removed) and the time required for infiltration of each drop was

recorded up to 300 s. Following this procedure, 1 cm of soil was
excavated immediately underneath the previously sampled area
and the WDPT method was repeated for an additional eight

drops. This process was repeated until a depth of 5 cm was
sampled. The mean WDPT at 0-, 1-, 2-, 3-, 4- and 5-cm soil
depths for each plot was recorded as themean of the eightWDPT

samples at the respective depth. Water repellency strength at
each sampled depth was classified as ‘slight’ if mean WDPT
ranged from 5 to 60 s and ‘strong’ if mean WDPT ranged from
60 to 300 s (Bisdom et al. 1993). Soils were considered wettable

wheremeanWDPT, 5 s. Surface soil sampleswere obtained for
0–5-cm depth adjacent to the WDPT sampling and were later
analysed in the laboratory for gravimetric soil water content.

An oscillating-arm rainfall simulator fitted with 80–100
Veejet (Spraying Systems Co., Wheaton, IL) nozzles was used
to apply rainfall on each small plot. The simulator design,

raindrop characteristics and rainfall calibration methods are
described by Pierson et al. (2008a, 2009, 2010). Rainfall
was applied to each plot at target rates of 64 mm h�1 under

dry (dry-run) and 102 mm h�1 under wet (wet-run) antecedent
soil moisture conditions for 45 min each. The dry- and wet-run
simulations were separated by a 30-min hiatus. Only the wet-run
data are used for the current study. The mean rainfall applied

was similar across burnt and unburnt conditions at a site
(P. 0.05).

Timed samples of plot runoff were collected over 1- to 3-min

intervals throughout each 45-min rainfall simulation and were
analysed in the laboratory for runoff volume and sediment
concentration as described in Pierson et al. (2010). Hydrologic

and erosion response variables were derived for each plot based
on the timed runoff samples. A mean runoff rate (mm h�1) was
calculated for each sample interval as the cumulative runoff
divided by the interval time. Cumulative runoff (mm) was
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calculated as the integration of runoff rates over the total time of
runoff. The percentage of rainfall converted to runoff on each
plot was calculated as a runoff-to-rainfall ratio (mm mm�1),

cumulative runoff divided by cumulative rainfall applied and
multiplied by 100%. Infiltration and sediment variables were
calculated for plots that generated runoff. An average infiltra-

tion rate (mm h�1) for each sample interval was calculated as
the difference between applied rainfall and measured runoff
divided by the sample interval duration. Cumulative sediment

yield (g m�2) was the integrated sum of sediment collected
during runoff and was extrapolated to a unit area by dividing
cumulative sediment by plot area. A sediment-to-runoff ratio
(g m�2mm�1) was obtained by dividing cumulative sediment

yield per unit area by cumulative runoff.

Large-plot scale

Canopy and ground cover on each large plot were recorded at
59 points (10 cm apart) along each of five evenly spaced (40 cm

apart, perpendicular to hillslope contour) transects 6 m in length
for a total 295 points per plot. Percentage cover for each cover
typewas derived for each plot as the frequency of hits divided by

the total number of points sampled. The relative ground-surface
height along line-point transects was measured as the distance
between the ground surface and a survey transit level line over
the respective sample point. Ground surface roughness of each

plot was estimated as the average of the standard deviations of
the ground surface heights across the five line-point transects
sampled within the respective plot.

Paired large-plot rainfall simulations were conducted with a
Colorado State University-type rainfall simulator described by
Holland (1969) and Pierson et al. (2009, 2010). The simulator

consists of seven stationary sprinklers elevated 3.05m above the
ground surface and evenly spaced along each of the outermost
borders of the respective rainfall-plot pair. Target rainfall rates
and application sequences were consistent with those for small

plots. Total rainfall applied to each large plot was determined
from the average of six plastic depth gauges in a uniform grid
(Pierson et al. 2010). The mean rainfall applied was similar

across burnt and unburnt conditions at a site (P. 0.05). Timed
samples of plot runoff were collected over 1- to 3-min intervals
throughout each 45-min rainfall simulation andwere analysed in

the laboratory for runoff volume and sediment concentration as
described in Pierson et al. (2010). Large-plot hydrologic and
erosion response variables were derived using the samemethods

used for the small-plot simulations.
Differences in runoff and erosion across small- to large-plot

scales were evaluated by comparing measured large-rainfall-
plot runoff and erosion with area-weighted small-rainfall-plot

data (Pierson et al. 1994, 2009, 2010; Williams et al. 2014b).
The proportions of interspace, shrub coppice and tree coppice
area on each large plot were determined from the large-plot

canopy and ground-cover measurements. For unburnt shrub-
interspace plots, percentage shrub canopy cover was used as an
estimate of the shrub coppice proportional area; the remaining

plot area was considered interspace. For unburnt tree zone plots,
the difference in percentage litter and percentage shrub canopy
cover was used to estimate proportional tree coppice area, and
percentage shrub cover was used to estimate proportional shrub

coppice area. The proportional interspace area in unburnt tree
zones was estimated as the remaining percentage plot area after
deducting, from 100%, the estimated shrub and tree coppice

coverage. The pre-fire representative areas of interspace and
shrub and juniper coppice could not be determined for burnt
large plots. Therefore, mean microsite area estimates from

unburnt shrub–interspace and tree zones were used to estimate
small-plot microsite coverage within burnt shrub–interspace
and tree zones respectively. Total area and cover for each

area-weighted large plot were 13 m2 and 100% cover. Cumula-
tive runoff and sediment yield for each area-weighted large plot
was obtained by multiplying mean cumulative small-plot runoff
and erosion values for the respective burnt or unburnt microsites

by the estimated representative microsite proportional areas and
summing the results for the entire plot.

Hillslope scale

Hillslope-scale understorey canopy and ground cover were

measured on each 30� 33-m plot using the line-point intercept
method along five 30-m transects installed 5–8 m apart and
perpendicular to hillslope contour (Pierson et al. 2010). Plot

canopy and ground cover were recorded at 60 points with 50-cm
spacing along each of the five transects for a total of 300 sample
points per plot. Percentage cover for each cover type was
derived for each plot as the frequency of hits divided by the total

number of points sampled.
The RHEM model (version 2.1; Nearing et al. 2011;

Al-Hamdan et al. 2015) was used to predict hillslope-scale

runoff and erosion for burnt and unburnt conditions at both
study sites. RHEM requires the following user input: (1) climate
data (via internal CLIGEN climate generator); (2) surface soil

texture class (upper 4 cm of soil profile); (3) hillslope length,
gradient and shape (uniform, convex, concave, or s-shaped); and
(4) percentage vegetation and ground cover by lifeform or cover
class (litter and rock). Baseline RHEMmodel runs were created

for each study site using climate, topographic and soils char-
acteristics consistent with those shown in Table 1. For Marking
Corral, the baseline RHEM model was constructed as follows:

(1) climate station – Ruby Lake, Nevada (station ID: 267123,
1832m elevation, 319mm annual precipitation); (2) sandy loam
soil texture; and (3) 30-m hillslope length, 10% slope and

uniform slope shape. For Onaqui, the baseline RHEM model
was constructed as follows: (1) climate station – Tooele, Utah
(station ID: 428771, 1470 m elevation, 432 mm annual precipi-

tation); (2) sandy loam soil texture; and (3) 30-m hillslope
length, 15% slope and uniform slope shape. Burnt and unburnt
simulations were created by populating canopy and ground
cover (as measured on the 30� 33-m site-characterisation plots)

for the respective conditions within the site-specific baseline
models.

The effect of concentrated-flow processes on hillslope-

scale sediment delivery was assessed through RHEM
predictions utilising splash-sheet-dominated and concentra-
ted-flow-dominated erodibility parameterisation schemes. The

splash-sheet-dominated erodibility scheme is the default para-
meterisation in RHEM and applies a very low erodibility
(0.003� 10�3 s2m�2) to detachment by concentrated flow,
typical for undisturbed vegetation and surface conditions.
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Therefore, sediment yield predicted by RHEM with the default
concentrated-flow erodibility is primarily accumulated as
splash-sheet detached sediment, transported by combined

splash-sheet and concentrated overland flow mechanisms
(Al-Hamdan et al. 2015). The default concentrated-flow detach-
ment capacity (Dc) in RHEM is calculated with the following

equation (Al-Hamdan et al. 2012a):

Dc ¼ Ko def ðoÞ ð1Þ

where Kv_def is the stream-power-based default concentrated-
flow erodibility (s2m�2), and v is model-derived stream power
(kg s�3). We applied RHEM with Eqn 1 in this study to predict

hillslope-scale erosion at both sites under splash-sheet-dominat-
ed processes for burnt and unburnt conditions. For the concen-
trated-flow-dominated scheme, we applied concentrated flow

parameterisation equations developed by Al-Hamdan et al.

(2012a, 2012b, 2013, 2015) specifically for application of
RHEM to woodland-encroached and burnt rangelands. The

RHEM concentrated-flow-dominated simulations for unburnt
conditions utilised the same form of the detachment capacity in
Eqn 1. However, the low default concentrated-flow erodibility,
Kv_def, was replaced with a calculated concentrated-flow erod-

ibility, Kv (s2m�2), suggested by Al-Hamdan et al. (2012a,
2015):

logðKoÞ ¼ �4:14� 1:28res� 0:98rock � 15:16clayþ 7:09silt

ð2Þ

where the variables res, rock, clay, and silt are respectively the
decimal percentages of residue (litter), surface rock cover, and
surface soil clay and silt contents. For application of RHEM to
burnt conditions, Al-Hamdan et al. (2015) suggested use of a

dynamic stream-power-based concentrated-flow erodibility
approach that decays from a maximum value (Kv(max)) during
the course of a runoff event. Concentrated-flow detachment

capacity for the dynamic approach in RHEM is calculated as:

Dc ¼ Pð Þ Ko maxð Þebqc
� �þ 1� Pð Þ Koð Þ� �

oð Þ ð3Þ

where P is the decimal probability of overland flow to concen-

trate, Kv(max) is a user calculated maximum concentrated flow
erodibility (s2m�2) at the time of runoff initiation, b is an
erodibility decay factor (�5.53 m�2), qc is cumulative unit flow

discharge (m2), Kv is the baseline concentrated flow erodibility
(s2m�2) from Eqn 2, and v is stream power (kg s�3). The
variables P, qc and v are derived internally and applied by
RHEM as described by Al-Hamdan et al. (2012a, 2013, 2015).

For the concentrated-flow-dominated scheme on burnt condi-
tions, Kv(max) was calculated with the following equation from
Al-Hamdan et al. (2015).

log KoðmaxÞ
� � ¼� 3:64� 1:97ðresþ bascryÞ � 1:85rock

� 4:99clayþ 6:06silt ð4Þ

where the variable bascry is the decimal percentage of the sum

of basal and cryptogam covers and all other variables are as
described for Eqn 2. The ground-cover data required to calculate

Kv and Kv(max) for application to burnt and unburnt conditions
were obtained from the 30� 33-m site-characterisation plots.
Soil particle size data for the modelled conditions were obtained

from Pierson et al. (2010; Table 1). The calculated erodibility
parameters for Marking Corral RHEM simulations were as
follows: (1) for burnt conditions,Kv(max)¼ 1.129� 10�3 s2m�2

and Kv¼ 0.656� 10�3 s2m�2; and (2) for unburnt conditions,
Kv¼ 0.335� 10�3 s2m�2. For Onaqui RHEM simulations, the
calculated erodibility parameters were as follows: (1) for burnt

conditions, Kv(max)¼ 1.067� 10�3 s2m�2 and Kv¼ 0.540�
10�3 s2m�2; and (2) for unburnt conditions, Kv¼ 0.498�
10�3 s2m�2. Al-Hamdan et al. (2015) found that the applied
erodibility parameterisation schemes yielded estimated erosion

rates within field measurement error for measured erosion
rates (rainfall simulations, 13-m2 plots, 102-mm h�1 intensity,
45-min duration) on gently sloping burnt and unburnt wood-

lands similar to those in the present study.

Data analysis

Statistical analyses were restricted to within-site comparisons

except where explicitly stated. Data collected at the small-plot
scale were analysed using a split-plot mixed model. The whole-
plot (treatment) factor had two levels, burnt and unburnt, and the

subplot factor (microsite) had three levels: interspace, shrub
coppice and tree coppice. Large-plot data were analysed using a
split-plot mixed model with two treatment levels, burnt and
unburnt, and two microsite levels, shrub–interspace zone and

tree zone. Hillslope-scale data collected from site characteri-
sation plots were analysed using a repeated-measures mixed-
model (compound symmetry covariance structure) with two

treatment levels, burnt and unburnt, and sample year as the
repeated measure, Year 0 and Year 1. Site, treatment and
microsite were considered fixed effects in all respective analy-

ses and plot location was designated a random effect. Prior to
ANOVA, normality and homogeneity were tested using the
Shapiro–Wilk test and Levene’s test (SAS Institute 2008) and

deviance from normality was addressed by data transformation.
Back-transformed results are reported. Mean separation
(P, 0.05) was conducted using the LSMEANS (SAS Institute
2008) procedure with Tukey’s adjustment.

Results

Small-plot scale

Burning generated uniform bare conditions for shrub and

interspace small-plot microsites that comprise the intercanopy
at both sites. Total canopy and shrub canopy covers were
reduced by burning on shrub plots at both sites (Table 2). Grass
canopy cover on shrub and interspace plots was reduced by a

factor of two to three following burning at Marking Corral, but
was unaltered by burning on sparsely vegetated shrub and
interspace plots at Onaqui (Table 2). Burning significantly

reduced litter and basal plant cover and increased bare soil on
shrub coppices at both sites, yielding bare ground (bare soil,
rock, ash) of 65–75%across all burnt shrub plots. Bare ground in

interspaces was 70–90% across burnt and unburnt conditions
(Table 2). Litter thickness underneath trees was reduced from
40 mm pre-fire to 23 mm post-fire at Marking Corral, and was
similar for burnt conditions across both sites (,20 mm).
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Percentage litter cover directly underneath trees was also
reduced by burning at Marking Corral, but litter cover under-
neath trees averaged 75–80% post-fire across both sites

(Table 2). The persistence of more than 70% litter cover at both
sites was aided in part by tree needle cast during the first year
post-fire. For burnt and unburnt treatments, the ground surface

on tree plots was well protected from raindrop impact owing to
75% or more coverage of plant and litter material. In contrast,
interspaces were largely bare across both treatments, and the

ground surface on shrub coppices was marginally protected for
the unburnt condition solely.

The bare interspaces were a primary source for runoff
generation and sediment delivery across treatments and sites,

and microsite hydrologic and erosion responses across sites
were differently affected by burning. All interspace plots gener-
ated runoff and sediment regardless of the treatment or site

(Table 3). Only two of the unburnt shrub plots and none of the
unburnt tree plots at Marking Corral generated runoff. In
contrast, 75–100% of tree and shrub plots at Onaqui generated

runoff and sediment for the unburnt condition. Fire removal of
vegetation and ground cover on shrub and interspace plots at
MarkingCorral had no effect on small-plot runoff or erosion, but

erodibility at that sitewas lowbased on uniformly low sediment-
to-runoff ratios (Table 3). Nearly 90% of burnt tree plots at
Marking Corral produced runoff, generating more than 20 mm
of runoff and nearly 50 gm�2 of sediment. Soils underneath tree

litter at Marking Corral were strongly water repellent pre- and
post-fire (Fig. 1a). Increased runoff post-fire on tree plots at
Marking Corral occurred due to litter depth reduction (loss of

rainfall storage, Table 2) and persistence of strongly water-
repellent soils post-fire (Fig. 1a). Nearly all of the tree plots at
Onaqui generated runoff and erosion (Table 3), but litter cover

and strong soil water repellencywere consistent across burnt and
unburnt tree plots at that site (Table 2, Fig. 1b). In contrast to the
relatively minor interspace erosion (,20–40 g m�2) at Marking
Corral, burnt and unburnt interspaces at Onaqui generated

,200–350 g m�2 of sediment and exhibited high erodibility,
5.53–7.11 g m�2 per mm of runoff. Overall, burning had no
effect on small-plot runoff at Onaqui, but burning increased

erosion by factors of three to six for shrub and tree plots
(Table 3). Pre-fire, interspaces at Onaqui were the primary
contributor of sediment, but all microsites generated substantial

erosion following burning.

Large-plot scale

Burning enhanced bare-ground connectivity on large plots at
both sites (Table 4). Prior to burning, the ground surface at the

sites was primarily exposed bare soil and rock (,70–85%
bare ground) in shrub–interspace zones and litter-covered in
tree zones (,80–90% litter cover). Pre-fire understorey vege-

tation in shrub–interspaces was dominated by shrubs atMarking
Corral (21% shrub canopy) and by herbaceous plants at Onaqui
(10%grass and forbs; Table 4). Ground cover by plants and litter
pre-fire in shrub–interspace plots was less than 30% at Marking

Corral and less than 10% at Onaqui. Burning facilitated forb
production in shrub–interspace plots at Marking Corral, but
resulted in a significant decrease in total canopy cover owing to

shrub consumption by fire (Table 4). Fire reduction of litter and T
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basal plant cover in shrub-interspaces at Marking Corral

increased bare ground (bare soil, rock, and ash) from 68 to 85%.
Burning had limited impact on the sparse canopy and ground
cover in shrub-interspaces at Onaqui (Table 4). Bare ground

averaged 82% across burnt and unburnt shrub-interspaces at that
site. Burning affected tree zones through reduction of tree litter
at both sites and grass cover at Onaqui (Table 4). The fires

reduced tree-zone basal plant and litter cover by 22% atMarking
Corral and by more than 60% at Onaqui (Table 4). Bare ground
in burnt tree zones was 30% at Marking Corral and was near
70% at Onaqui.

Runoff generated in well-connected bare interspaces contrib-
uted to four- to seven-fold differences in runoff and erosion rates

from unburnt shrub–interspaces relative to tree zones, and

erosion rates were amplified by burning (Figs 2 and 3). Approxi-
mately half of the rainfall applied in unburnt shrub-interspaces at
a site became runoff (Table 5). The highly erodible bare surface in

unburnt shrub-interspaces at Onaqui yielded five-fold more
erosion than the well-protected ground surface in tree zones
(Table 5). Erosion from unburnt shrub-interspaces at Marking

Corral exceeded that of the tree zones (Table 5), but the magni-
tude of soil erosion was 60% less than that at Onaqui (P, 0.05).
Overall, unburnt tree zones generated minor runoff and sediment
discharge from the high-intensity simulated storms (Figs 2 and 3;

Table 5). Burning had no significant effect on runoff at Marking
Corral for the large-plot scale, but erosion at that site was more

Table 4. Average surface roughness and canopy and ground cover measured on burnt (1 year post-fire) and unburnt (1 year before burning) large

rainfall simulation plots (13 m2) at the Marking Corral and Onaqui study sites

Treatment means within a row by study site (Marking Corral or Onaqui) followed by a different lower-case letter are significantly different (P, 0.05)

Plot characteristic Marking Corral Onaqui

Burnt Unburnt Burnt Unburnt

Shrub–interspace

zone

Tree zone Shrub–interspace

zone

Tree zone Shrub–interspace

zone

Tree zone Shrub–interspace

zone

Tree zone

Surface roughness (mm) 15 a 13 a 17 ab 22 b 26 a 26 a 31 a 35 a

Total canopy cover (%)A 23.0 b 6.2 a 34.7 c 15.9 b 17.2 b 3.3 a 12.7 a 20.8 b

Shrub canopy cover (%) 0.4 a 0.0 a 20.6 c 1.5 b 0.2 a 0.1 a 0.5 b 0.0 a

Grass canopy cover (%) 5.1 bc 1.5 a 8.1 c 2.8 ab 6.1 b 0.7 a 5.7 b 12.3 c

Forb canopy cover (%) 14.1 b 4.2 a 0.4 a 0.2 a 1.8 a 0.5 a 4.7 b 2.8 ab

Plant and litter ground

cover (%)B
14.5 a 72.8 c 31.7 b 93.6 d 19.0 a 31.9 b 15.8 a 88.2 c

Litter cover (%) 10.4 a 66.9 c 28.5 b 87.8 d 15.1 a 30.1 b 7.3 a 78.8 c

Rock cover (%) 15.6 b 3.6 a 46.8 c 3.6 a 38.1 b 9.7 a 58.0 c 7.7 a

Bare soil (%) 69.7 c 18.9 b 21.5 b 2.8 a 42.7 c 41.0 c 26.1 b 4.1 a

Ash (%) 0.2 a 4.8 b – – 0.2 a 17.4 b – –

Number of plots 6 6 6 6 6 6 6 6

AExcludes tree canopy removed immediately before rainfall simulation.
BIncludes cryptogam, litter, live and dead basal plant and woody dead cover.
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Fig. 1. Water drop penetration times (WDPT, 300-s maximum) measured at 0–5-cm soil depths

underneath tree canopies on burnt and unburnt small rainfall simulation plots (0.5 m2) at the Marking

Corral (a), and Onaqui (b) study sites 1 year post-fire. Soils were considered slightly water repellent if

WDPT ranged from5 to 60 s and stronglywater repellent ifWDPT exceeded 60 s (Bisdom et al. 1993).

Error bars depict standard error. Site means across depths within a treatment followed by a different

upper-case letter are significantly different (P, 0.05). Site means for a specific soil depth across

treatments followed by a lower-case letter are significantly different (P, 0.05).
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Fig. 2. Runoff hydrographs (a) and sedigraphs (b) for large-plot (13 m2) rainfall simulations (102 mm h�1, 45 min) that

generated runoff on burnt (1 year post-fire) and unburnt (1 year pre-fire) tree (Tree; Pinus monophylla Torr. and Frém. or

Juniperus osteosperma [Torr.] Little) and shrub–interspace (Shr-Int) zones at the Marking Corral study site.
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Fig. 3. Runoff hydrographs (a), and sedigraphs (b) for large-plot (13 m2) rainfall simulations (102 mm h�1, 45 min) that

generated runoff on burnt (1 year post-fire) and unburnt (1 year pre-fire) shrub–interspace (Shr-Int) zones and tree zones (Tree;

Juniperus osteosperma [Torr.] Little) at the Onaqui study site.

Table 5. Average runoff, infiltration, and sediment response variables for large-plot (13-m2) rainfall simulations (102 mm h21, 45 min) in burnt

(1 year post-fire) and unburnt (1 year before burning) areas at the Marking Corral and Onaqui study sites

Treatment means within a row by study site (Marking Corral or Onaqui) followed by a different lower-case letter are significantly different (P, 0.05)

Rainfall simulation variable Marking Corral Onaqui

Burnt Unburnt Burnt Unburnt

Shrub–

interspace

zone

Tree

zone

Shrub–

interspace

zone

Tree

zone

Shrub–

interspace

zone

Tree

zone

Shrub–

interspace

zone

Tree

zone

Cumulative runoff (mm) 34 b 11 a 36 b 3 a 31 b 43 b 47 b 11 a

Runoff-to-rainfall ratio (mm mm�1)� 100% 40 b 13 a 46 b 3 a 41 b 52 b 50 b 12 a

Mean infiltration rate (mm h�1)A 61 a 92 b 57 a 115 b 56 a 55 a 62 a 109 b

Cumulative sediment (g m�2)A 346 c 78 ab 154 b 43 a 491 b 1893 c 401 b 78 a

Sediment/runoff (g m�2mm�1)A 9.56 a 7.15 a 4.21 a 5.40 a 16.01 c 44.67 d 9.01 b 6.09 a

Percentage of plots with runoff 100 100 100 67 100 100 100 100

Number of plots 6 6 6 6 5 5 6 6

AMean based solely on plots that generated runoff.
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than two-fold greater for burnt than unburnt shrub–interspace
plots (Table 5). In contrast, burning resulted in similar runoff
across burnt tree zones and all shrub–interspace plots at Onaqui

(Table 5).Approximately 40–50%of rainfall applied to burnt tree
zones and all shrub–interspace plots at Onaqui was converted
to plot runoff (Table 5). Only 12% of rainfall was converted to

runoff on unburnt tree zones at Onaqui. Fire removal of litter on
tree zones at Onaqui dramatically increased sediment discharge
(Fig. 3b) and resulted in 24-fold greater sediment yield and
7-fold more sediment per unit of runoff relative to unburnt

tree zones. Soil erosion did not increase following burning of
shrub–interspaces at Onaqui, but the amount of sediment per
unit of runoff from shrub–interspace zones at the site increased

by nearly 77% following fire (Table 5).
With few exceptions, runoff was generally similar across

small-plot and large-plot scales for burnt and unburnt conditions

(Fig. 4a). For the unburnt condition, sediment yield was consis-
tent across spatial scales for areas underneath and influenced by
tree canopies (Fig. 4b) owing to a preponderance of tree litter

(Table 4). Sediment yield increased across small-plot to large-
plot scales for unburnt shrub-interspaces without associated
increases in cross-scale runoff (Fig. 4). The increase in sediment

yield across spatial scales for unburnt shrub-interspaces at
both sites is attributed to accentuated erosion and sediment
transport in observed concentrated-flow paths within the

sparsely vegetated shrub–interspace plots. Burning had no
effect on cross-scale erosion from tree plots at Marking Corral
due to accumulation of needle cast and limited spatial tree-

litter reduction (Tables 2 and 4). However, burning of shrub–
interspaces at Marking Corral resulted in increased erosion
across small-plot to large-plot scales without a cross-scale
increase in runoff (Fig. 4). Erosion rates were high across the

small-plot and large-plot scales for burnt shrub–interspaces at
Onaqui (Fig. 4b). Sediment yield was more than six-fold greater
for the measured large-plots than area-weighted large plots in

burnt tree zones at Onaqui (Fig. 4b). The cross-scale fire effect
on tree plots at Onaqui is attributed to ample sediment availabil-
ity in tree zones following fire and formation of observed

concentrated flow over burnt and water-repellent soils (Fig. 1b).

Hillslope-scale

The hillslope-scale plant community structure was coarse pre-
fire, and bare ground was extensive before and after burning
(Table 6). Prior to burning, ,70% of the area at each site
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comprised degraded intercanopy surrounding isolated 4- to 5-m-
diameter litter-covered tree islands (25–30% total tree cover).

The Marking Corral site contained isolated shrub islands (18%
cover) within the intercanopy, surrounded by more than 50%
bare ground (bare soil and rock). The understorey at Onaqui was
sparsely vegetated with grass and forbs (10% total herbaceous

cover) pre-fire and contained ,60% bare ground. Burning sig-
nificantly reduced hillslope-scale shrub canopy and litter ground
cover at Marking Corral (Table 6). Burning had no significant

impact on the sparse understorey vegetation and ground cover at
Onaqui over the hillslope scale (Table 6). Bare ground at both
sites was near 70% 1 year following the prescribed fires.

The effects of concentrated flow on the detachment and
delivery of sediment from plot to hillslope scales are evident in
the RHEM hillslope simulations for the degraded and burnt

woodlands. RHEM simulations of 30-m hillslope runoff and
erosion using the splash-sheet-dominated parameterisation gen-
erated low levels of erosion (,40 g m�2) for burnt and unburnt
conditions regardless of the runoff event (Figs 5a–c and 6a–c).

Return-interval event simulations for the concentrated-flow-
dominated parameterisation (Figs 5d and 6d) generated 5–15-fold
more sediment than simulations with splash-sheet-dominated

erosion (Figs 5c and 6c) from burnt and unburnt conditions.
For unburnt conditions at Marking Corral, the 25- to 100-year
runoff events all generated fairly high levels of erosion

(.75 g m�2) associated with connected splash-sheet and con-
centrated-flow processes (Fig. 5d). Modelling the 25–100-year
runoff events for unburnt conditions with the splash-sheet-
dominated model generated,15 g m�2 erosion for each event.

The influence of process connectivity on simulated erosion was
most evident for the burnt condition at Marking Corral. All
simulated runoff events except the 2-year event generated more

than 100 gm�2 from combined processes for the burnt condition
at that site (Fig. 5d). The effects of sparse cover on runoff and

erodibility are evident for burnt and unburnt conditions at

Onaqui. Differences in predicted runoff and sediment yield
for burnt versus unburnt conditions at Onaqui (Fig. 6) were
generally less than those observed for Marking Corral (Fig. 5).
As with Marking Corral, the concentrated-flow-dominated

parameterisation generated substantial erosion across burnt
and unburnt conditions, with erosion .100 g m�2 for nearly
all return-interval events.

Discussion

The measured and modelled runoff responses across spatial
scales for unburnt conditions demonstrate the effect of structural
and functional connectivity on hillslope-scale hydrologic

response. Bare interspaces between tree and shrub canopies
were sources for runoff and sediment delivery at the patch scale.
Modelled hillslope-scale runoff from the 100-year event (19mm
runoff, 75 mm precipitation) on unburnt conditions at Marking

Corral (Fig. 5b) was slightly less than that measured from large-
plot rainfall simulations (,27 mm area-weighted, Table 5). At
Onaqui, modelled hillslope-scale runoff (35 mm, Fig. 6b) and

measured large-plot runoff (,37 mm area-weighted, Table 5)
were similar for the 100-year runoff event (75 mm precipita-
tion). The differing cross-scale runoff responses for the sites are

attributed to site differences in ground cover by litter (Table 6).

Table 6. Hillslope-scale understorey canopy and ground-cover char-

acteristics pre- and post-fire as measured on 303 33-m site characteri-

sation plots at the Marking Corral and Onaqui sites

Treatment means within a row followed by a different lower-case letter are

significantly different (P, 0.05)

Marking Corral Onaqui

Burnt UnburntA Burnt UnburntA

Understorey canopy cover

Total canopy (%) 40.0 b 26.8 ab 17.6 a 19.8 a

Shrub (%)B 4.6 b 17.7 c 0.4 a 0.9 a

Grass (%) 10.0 b 4.8 ab 3.4 a 6.2 ab

Forb (%) 10.6 c 0.1 a 6.0 bc 3.3 b

Ground cover

Basal plant (%) 0.1 a 0.3 a 0.4 a 0.9 a

Moss and lichen (%) 0.0 a 0.0 a 2.4 ab 4.6 b

Litter (%) 31.4 a 47.4 b 29.7 a 34.4 a

Rock (%) 16.5 a 25.4 b 31.6 b 29.0 b

Bare soil (%)C 52.0 b 26.8 a 35.9 a 31.1 a

AData from Pierson et al. (2010), but restricted to the area subsequently

burned as part of the present study.
BIncludes juvenile tree cover (,1.0 m height, ,2%).
CIncludes trace amount of ash (,1%).

500

Marking Corral
60

50

Splash-Sheet-
dominated

Conc. flow-
dominated

40

30

20

10

0

600

500

400

300

200

100

0

450

400

350

300
100

(a) (b)

(c) (d )

75

50

25

0

60

50

40

S
ed

im
en

t y
ie

ld
 (

g 
m

�
2 )

S
ed

im
en

t y
ie

ld
 (

g 
m

�
2 )

P
re

ci
pi

ta
tio

n 
(m

m
)

R
un

of
f (

m
m

)

30

20

10

A
nn

.

2-
Y

r

5-
Y

r

10
-Y

r

25
-Y

r

50
-Y

r

10
0-

Y
r

A
nn

.

2-
Y

r

5-
Y

r

10
-Y

r

25
-Y

r

50
-Y

r

10
0-

Y
r

0

Burnt
Unburnt

Fig. 5. Annual (Ann.) and runoff-event precipitation (a), and hillslope-

scale (30-m length) runoff (b), and erosion (c and d) predicted by the

Rangeland Hydrology and Erosion Model (RHEM; Nearing et al. 2011;

Al-Hamdan et al. 2015) for burnt (black bars) and unburnt (light-grey bars)

conditions at Marking Corral. Predicted sediment yield is shown for cases in

which erosion is dominated by splash and sheet (c, left y axis) and by

concentrated-flow (d, right y axis) processes to demonstrate the effects of

process connectivity on hillslope sediment delivery.
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The limited attenuation in runoff across spatial scales is an
indicator of low cross-scale run-on infiltration potential, well-
connected runoff sources and high sediment transport capacity

at the hillslope scale (Puigdefábregas et al. 1999; Cammeraat
2002; Wainwright and Parsons 2002; Wilcox et al. 2003). The
overall poor hydrologic function at the hillslope scale at both

sites is the result of cross-scale structural connectivity of inter-
canopy bare ground and runoff sources (Davenport et al. 1998;
Turnbull et al. 2008; Pierson et al. 2010; Turnbull et al. 2010a,
2010b; Reaney et al. 2014; Williams et al. 2014a).

Burning enhanced hillslope-scale structural connectivity of
runoff sources and increased potential for cross-scale sediment
transport. Burning at Marking Corral increased intercanopy bare

ground, but had more limited impact on tree-zone bare ground
owing to tree needle cast (Table 4). Measured runoff was
consistent across plot scales for burnt conditions at Marking

Corral (Fig. 4a) and was similar for burnt and unburnt conditions
on large plots (Fig. 2a). However, modelled hillslope runoff for
the 100-year event on burnt conditions at Marking (36 mm)

was nearly twice that of unburnt conditions (19 mm, Fig. 5b) and
was higher than measured for similar rainfall at the large-plot
scale (Table 5). The greater hillslope-scale modelled runoff at
Marking Corral for burnt versus unburnt conditions is attribut-

ed to increased cross-scale connectivity of bare ground (struc-
tural connectivity) following burning (Johansen et al. 2001;

Benavides-Solorio and MacDonald 2005; Wagenbrenner et al.
2006; Pierson et al. 2009; Williams et al. 2014a, 2014b). Bare
ground was greater for burnt versus unburnt conditions at the

hillslope scale at Marking Corral (Table 6) due to an increasing
effect of large-plot litter coverage reductions (Table 4) aggregat-
ed over the larger spatial scale. At Onaqui, burning did not

significantly reduce intercanopy ground cover at the large-plot
scale, but did reduce tree-zone litter cover more than two-fold
(Table 4). The limited ground-cover reductions in the intercanopy

did not significantly affect large-plot runoff, but litter removal on
strongly water-repellent soils under trees increased measured
large-plot runoff by a factor of four (Table 5, Fig. 3). Runoff
slightly increased across the small-plot to large-plot scales for

tree plots at Onaqui following burning, a reversal of the pre-fire
trend (Fig. 4a). Likewise, the 100-year-event modelled hillslope-
scale runoff for burnt conditions (41 mm) at the site was slightly

greater than for unburnt conditions (35 mm, Fig. 6b) and was
more than measured on burnt large plots (34 mm, area-weighted,
Table 5). For both sites, the increased runoff across spatial scales

for burnt conditions indicates that ample runoff was available for
overland flow detachment and transport of soil particles to the
hillslope scale (Wilcox et al. 1996; Robichaud et al. 2008a;

Pierson et al. 2009; Robichaud et al. 2013b).
Erosion from rainfall simulations demonstrates the combined

effect of process connectivity and sediment availability on patch-
scale soil erosion. At the small-plot scale, measured erosion from

well-protected unburnt shrub plots was minimal (Table 3). The
high-intensity storm applied to unburnt bare interspaces generat-
ed substantial erosion at Onaqui, but only limited erosion at

Marking Corral (Table 3). However, measured erosion increased
across small-plot to large-plot scales for the unburnt intercanopy
at both sites without increases in cross-scale runoff (Fig. 4).

Ample small-plot measured runoff generated in unburnt inter-
spaces at both sites contributed to formation of concentrated-flow
paths through the degraded shrub–interspace zones. The concen-
trated flow was able to transport rainsplash-detached sediment

and to detach and transport sediment from within incised flow
paths, yielding high rates of sediment discharge (Figs 2b and 3b;
Pierson et al. 2010, 2013;Williams et al. 2014b). Fire reductions

of ground cover increased sediment availability on shrub and tree
plots (Table 3; Pierson et al. 2002, 2008a, 2009; Robichaud et al.
2008b; Al-Hamdan et al. 2012a) and provided additional

sediment for transport to large-plot scale (Pierson et al. 2009,
2013; Nyman et al. 2013; Williams et al. 2014b). Measured
erosion increased across small-plot to large-plot scales for all

burnt conditions except tree zones at Marking Corral (Fig. 4b).
We attribute the increased cross-scale erosion for burnt plots to
connectivity of runoff, similar to unburnt conditions, and addi-
tional sediment availability from burnt tree and shrub coppice

areas. Erosion did not increase following burning of tree zones at
Marking Corral due to the surface protection by needle cast
(Pannkuk and Robichaud 2003) and limited runoff (Fig. 2a).

The RHEM hillslope simulations further demonstrate the
combined effect of cross-scale process connectivity and sedi-
ment availability on hillslope-scale response. The splash-sheet-

dominated simulations predicted minor sediment yield at the
hillslope scale for unburnt and burnt conditions (Figs 5c and 6c).
For the 100-year runoff event at Marking Corral, the concen-
trated-flow-dominated model predicted 100 and 314 g m�2
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scale (30-m length) runoff (b), and erosion (c and d) predicted by the

Rangeland Hydrology and Erosion Model (RHEM; Nearing et al. 2011;

Al-Hamdan et al. 2015) for burnt (black bars) and unburnt (light-grey bars)

conditions at Onaqui. Predicted sediment yield is shown for cases in

which erosion is dominated by splash and sheet (c, left y axis) and by

concentrated-flow (d, right y axis) processes to demonstrate the effects of

process connectivity on hillslope sediment delivery.
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sediment yield for unburnt and burnt conditions respectively.
The 100-year event sediment yields predicted for Marking
Corral (Fig. 5d) were nearly equal to those measured on unburnt

and burnt large plots (124 and 274 g m�2 area-weighted) with a
similar total rainfall (,80 mm). At Onaqui, the 100-year event
with the concentrated-flow-dominated model predicted 413 and

516 g m�2 for unburnt and burnt conditions respectively. The
RHEM 100-year event sediment yields predicted for Onaqui
(Fig. 6d) exceeded that measured on large plots for unburnt

conditions (311 g m�2 area-weighted) and were less than
measured on large plots for burnt conditions (884 g m�2 area-
weighted). The RHEM results for Onaqui suggest sediment
availability at the large-plot scale may have been greater than at

the hillslope scale for burnt conditions. Al-Hamdan et al.

(2012a) derived stream-power-based erodibilities for the
Onaqui site using data from concentrated-flow experiments in

this study and reported erodibilities of 4.03� 10�3 and
0.66� 10�3 s2m�2 for burnt tree zones and shrub–interspace
zones respectively. Area-weighting those values for the tree and

shrub–interspace zones at Onaqui yields an estimated erodibility
of 3.09� 10�3 s2m�2, a value substantially greater than the
cover-based stream power erodibility 1.067� 10�3 s2m�2

(Kv(max), Eqn 4) derived for RHEM simulations of burnt condi-
tions at Onaqui. For both sites, burning increased sediment
availability at all scales of measurement through reduction of
surface protection in the few areas of pre-fire soil accumulation

(Robichaud et al. 2008b; Al-Hamdan et al. 2012a; Nyman et al.
2013; Williams et al. 2014b). The large differences in erosion
across burnt and unburnt conditions for the two sites are attributed

to inherent site-specific differences in soil erodibility (Pierson
et al. 2010; Al-Hamdan et al. 2012a) and overall more degraded
conditions and higher runoff (unburnt condition) at Onaqui.

Our results in context with other studies underscore the
importance of considering the connectivity of surface suscepti-
bility (structural connectivity) and rainfall characteristics in
prediction of burnt area hydrologic and erosion responses

(Moody and Martin 2001b; Reaney et al. 2007; Moody et al.

2008, 2013; Robichaud et al. 2013b; Wagenbrenner and
Robichaud 2013; Williams et al. 2014a). Our single-intensity

plot-scale results demonstrate that hillslope-scale responses to
rainfall input are dictated by the connectivity of hydrologically
susceptible surface conditions and the integration of runoff and

erosion processes (functional connectivity) across spatial scales.
Surface conditions and topography affect runoff and erosion at
various scales largely by affecting the amount and energy of

water input and storage (Benavides-Solorio and MacDonald
2005; Wagenbrenner et al. 2006; Reaney et al. 2007; Moody
et al. 2008; Pierson et al. 2009; Al-Hamdan et al. 2012b, 2013;
Wagenbrenner and Robichaud 2013; Reaney et al. 2014;

Williams et al. 2014a, 2014b). The amount and energy of water
applied to the overall system is of course governed by the
rainfall characteristics (i.e. amount, mass, intensity). For con-

ditions in the present study, application of a varying-intensity
event or one with a higher or lower intensity and duration would
likely elicit different plot-scale runoff and erosion responses

(Wainwright and Parsons 2002), as illustrated by the RHEM
modelled return-interval runoff events (Figs 5 and 6). Numerous
studies have documented the effect of rainfall characteristics
on runoff and erosion responses (Benavides-Solorio and

MacDonald 2005; Spigel and Robichaud 2007; Cannon et al.

2008, 2011; Robichaud et al. 2013b; Moody et al. 2013). In each
of these studies, the largest events were associated with high

volumes of water input, contiguous susceptible surface condi-
tions, and connectivity of processes across spatial scales.

Conclusions

Our results clearly demonstrate the roles of structural and

functional connectivity in the delivery of hillslope-scale runoff
and sediment for degraded and burnt landscapes, and show that
cross-scale runoff and sediment delivery evolve through the
connectivity of susceptible surface conditions and superposition

of overland flow and erosion processes. The magnitude of
hydrologic response is governed by the degree of connectivity in
processes, sediment availability, and the intensity and volume of

water input. Degradation of arid and semiarid landscapes
increases the structural connectivity of surface susceptibility to
runoff generation and sediment detachment and transport.

Runoff generated in bare patches concentrates downslope into
defined flow paths with high velocity and sediment detachment
and transport capacity. Burning increases structural and process

connectivity and sediment availability through the removal of
canopy and ground cover. Increased sediment availability
results in a greater magnitude of cross-scale sediment yield
where runoff and erosion processes are well connected across

spatial scales. Of course, the magnitude of response is also
strongly influenced by the intensity or volume of water input
given erosion dependency on rainfall and runoff for sediment

delivery. Although our inferences are drawn from only two
study sites, the hydrologic and erosion responses at each spatial
scale in this study are consistent with other studies from

degraded and burnt landscapes and provide tangible evidence of
the importance in considering cross-scale connectivity of sur-
face susceptibility, runoff and erosion processes, and sediment
availability when forecasting hillslope hydrologic response.
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